FINAL REPORT

OU/AEC 92-3TM00006/46+46A-1

Hybrid GPS/Loran-C

by

Frank van Graas, Ph.D.
Paul A. Kline, M.S.E.E.

Avionics Engineering Center
Ohio University
Athens, OH 45701

July 1992

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION
VOLPE NATIONAL TRANSPORTATION SYSTEMS CENTER

Kendall Square, Cambridge, MA 02142

Contract DTRS-57-87-C-00006
TTD-46

Deliverable Item #3
Task 5




EXECUTIVE SUMMARY

Fault detection and isolation (FDI) algorithms are required to achieve a sole-means
navigation system using GPS and Loran-C. In order to provide a better understanding
of the Fault Detection and Isolation algorithm, a simplified example is presented using
three voltmeters to measure a single voltage. The two redundant measurements allow
for the full characterization of the FDI algorithm.

Because navigation systems will depend on FDI for integrity assurance, the availability of
a navigation system will depend on the availability of at least two redundant
measurements. A Markov analysis, combined with a GPS coverage program, is
presented to show that GPS by itself could meet supplemental availability requirements
for fault detection, but not for isolation. An example of an integrated navigation system,
GPS/Loran-C, is presented and actual flight data is used to demonstrate the FDI
algorithm in the presence of signal failures. Computer simulations are performed to
inject artificial failures into GPS and Loran-C signals, and the results of the FDI
algorithm are displayed pictorially.

The following conclusions are based on the work presented in this report:

1. Sole means navigation will require a high availability of at least two redundant
measurements for FDI. Therefore, GPS must be augmented by another system, such as
Loran-C, before it has the potential to meet requirements for sole means navigation.

2. The probability of a false alarm should not be traded against the probability of a
missed detection. Instead, both probabilities should be traded against the horizontal
protection radius. This approach guarantees the integrity of the navigation solution at
all time and space points. Furthermore, it facilitates changes in navigation accuracy
requirements without the need to change the implementation of the algorithm.

3. The parity vector should be observed over a period of time in order to aid fault
isolation. The "snapshot" batch estimator is still applicable, but rather than discarding
the parity information for each measurement sample, the history of the parity vector
should be stored and evaluated. The methods presented in this report constitute a novel
approach to fault isolation which greatly enhances the effectiveness of FDI.
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1. INTRODUCTION

Recent advances in electronic navigation systems such as the introduction of the
satellite-based Global Positioning System (GPS) and the improved coverage of the
terrestrial Loran-C system have allowed the development of integrated systems which
could be certified for sole means air navigation [1]. A integrated (or hybrid) navigation
system would combine the information obtained from such systems as Omega, Loran-C,
the Very High Frequency Omnidirectional Range system (VOR), the Distance
Measuring Equipment system (DME), the Tactical Air Navigation system (TACAN), the
Inertial Navigation System (INS), GPS, and the Soviet Global Navigation Satellite
System (GLONASS). GPS is an especially popular choice for a hybrid system because
of the high accuracy it delivers and because it does not meet the requirements for sole
means navigation as a stand-alone system [2]. Some hybrid systems currently being
researched include GPS/INS, GPS/Loran-C, and GPS/GLONASS.

Motivation for this report stems from the ongoing Federal Aviation Administration
(FAA) efforts to define the performance standards for sole means navigation using GPS
with appropriate augmentations. As part of this effort, minimum operational
performance standards (MOPS) are being developed by RTCA Special Committee 159
[3]. This is a unique task because the integrity provided by GPS itself is insufficient, and
there currently exists no external integrity monitor. Therefore, the receiver must
perform all integrity checking using only the available measurement data. The
implementation of the integrity function in the receiver is referred to as Fault Detection
and Isolation (FDI). FDI has already been successfully applied to redundant inertial
navigation systems [4,5,6].

The International Civil Aviation Organization (ICAO) recently held their 10th Air
Navigation Conference [7]. It was recognized that satellites will be used extensively in
future air navigation. One recommendation approved at the conference is that a
decision should be made as to how satellite system integrity should be monitored. The
most promising method discussed was the use of redundant measurements to perform
Fault Detection and Isolation.

The objective is to detect and isolate sensor malfunctions which cause unacceptable
position errors using only inconsistency in the measurement data. For sole means
navigation, two estimators should be used in parallel to achieve FDI:

1. A recursive estimator, typically a Kalman filter, which uses the history of the
measurement data to assess the reasonableness of new measurement data. This
estimator does not require redundant measurements.

2. A least squares batch estimator which does not rely on the measurement
history, but it requires at least one redundant measurement.



The recursive estimator is used to detect and isolate rapidly growing measurement errors
by inspecting the estimator residuals, which are the differences between the actual
measurements and the predicted measurements based on the history of the
measurements. If for instance a measurement residual would be outside the residual
interval [-6.10, 6.10], where o is the standard deviation of normally distributed
measurement noise, then the probability of this event would be less than 10 for a static
user. This event would be extremely unlikely and the integrity alarm would be raised.

In the presence of user dynamics, the residual interval would be increased consistent
with the user dynamics. Note that isolation of the faulty measurement is achieved as
well.

A least squares batch estimator is used to detect slowly growing measurement errors
which go undetected by the recursive estimator. The use of the least squares estimator
for this purpose is justified, because:

Independent of the type of estimator used, the position bias error caused by
measurement bias errors will always converge to the position bias error of the
least squares estimator. Generally, the time constant of convergence is short
compared to the slow error growth of a difficult to detect measurement error.

All information about the inconsistencies in the measurement data is contained in the
residuals of the least squares estimator. These residuals are the differences between the
actual pseudorange measurements and those predicted based on the least squares
position solution and the known transmitter coordinates.

An algorithm will be introduced that provides integrity using a batch estimator in the
presence of redundant measurements. The classical trade-off between false alarms and
missed detections is avoided. To illustrate the algorithm, a simplified example is
presented using three voltmeters to measure a single voltage. The availability of fault
detection for GPS is then addressed to show that GPS alone cannot meet sole means
navigation requirements. The FDI algorithm is then applied to an integrated navigation
system combining GPS and Loran-C. Using real flight data, artificial failures are
injected to study the performance of the FDI algorithm. The algorithm performance is
independent of measurement geometry and the output of the algorithm also provides a
confidence level for the navigation solution.

2, LEAST SQUARES FAULT DETECTION
2.1  False Alarms and Missed Detections
A problem fundamental to fault detection is that it always involves a degree of

uncertainty. The concept of parity space, which will be developed in more mathematical
detail in Section 2.3, is important because the fault detection and isolation occurs in this



domain. The position estimate lies in estimation space, which is not the same as parity
space. Furthermore, the measurements lie in measurement space. Therefore, it is only
possible to "guess" that an error exists by examining a snapshot of parity space when the
measurements are made. It is therefore possible for a faulty measurement to go
undetected and, conversely, for a fault to be declared when none actually exists. To gain
a better understanding of the above issues, it is necessary to discuss least squares fault
detection in detail.

One of the main input parameters to the fault detection algorithm is the alarm
threshold, defined as the allowable horizontal radial error in the calculated user position.
The ideal case would be to raise an alarm only when this limit is exceeded and never
raise an alarm otherwise. However, since fault detection is performed in the presence of
measurement noise and in a domain other than the estimation space, it is only possible
to detect a fault with a certain probability. Therefore, two undesirable events are
possible - a false alarm and a missed detection. Two major parameters used in
characterizing the performance of the fault detection algorithm are the probability of a
false alarm (Pg,) and the probability of a missed detection (Pyp). As one might assume,
it is desirable for these probabilities to be very small, consistent with airspace
requirements.

It is important to recognize the fact that a measurement error does not always cause a
significant error in the position estimate. Not all errors are highly "visible" in estimation
space due to, for instance, the geometry of the satellites. Yet in parity space the error
can cause a fault to be falsely declared. Similarly, a measurement error that is highly
visible in estimation space can be relatively transparent in parity space. This can cause
an unacceptable position error even though no errors are detected in parity space. The
consequences of this are quite serious because of obvious safety issues. Traditionally,
there has been a trade-off between false alarms and missed detections - reducing the
number of false alarms increases the risk of missed detections and vice versa. Due to
the seriousness of missed detections and because numerous false alarms reduce user
confidence in the system, the approach taken here is not to perform a trade-off between
false alarms and missed detections. Instead, both probabilities will be traded against the
protection radius, which is the horizontal radial position error which can be protected by
the algorithm given the probabilities of false alarm and missed detection. Note that the
protection radius is always larger than the operational accuracy requirement. For
instance, the accuracy requirement for a nonprecision approach could be 100 meters
(probability of exceeding less than 0.05), while the protection radius would be 555 meters
(probability of exceeding less than 10°®).

2.2 The Detection Statistic

A fault is declared when a detection statistic exceeds a certain detection threshold. The
detection threshold depends on the measurement noise and the desired false alarm rate.
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As is intuitively expected, a smaller desired false alarm rate results in a larger detection
threshold. Also, measurement noise with a large standard deviation causes more alarms
to be triggered. The detection statistic is determined from parity relations.

Figure 1 illustrates two likely scenarios that would arise in the event of a slow clock
drift. These two cases illustrate what would be observed if a small-sloped ramp error
(such as a clock drift in a GPS satellite) slowly degraded the operational accuracy of the
system. In case I, the detection threshold is breached before the alarm threshold is
crossed, causing a false alarm. As the position error grows, the false alarm becomes a
correct alarm. In case II, the alarm threshold is exceeded before the detection threshold
is exceeded, resulting in a missed detection. Eventually the detection threshold is
crossed, causing a flag to be raised for a correct alarm. The normal operating state
includes all circumstances where neither threshold is exceeded. For sole means systems,
the probability of being in this state should be close to one.

2.3  Parity Space and Estimation Space

Consider a scenario where two measurements y, and y, from two different voltmeters are
made of the same physical quantity (e.g. a battery voltage). Following Potter and Suman
[8], if this pair of measurements contains no errors, then:

Y77, = 0 @.1)

Because this equation shows that y, and y, are identical, it is called a parity equation.
Now if measurement errors ¢, and e, are included, the equation becomes:

(yl_el) . 02_32) =0 (22)

which can be written in the form:

Y17Y2 =€ "€ =P (23)
The value p is a measure of the inconsistency between the two measurements. A value
of zero for p implies that e, and e, are the same, not that e, and e, are each necessarily

zero. In fact, many combinations of e, and e, result in a p of zero. Now add a third
measurement y,, which results in three possible parity equations:

Yi7Y2 =€17% = P
Y,"Y3 = €76 =P (24)

Y3~Y; = €€ = Ps

Note that the third equation can be formed as a linear combination of the first two
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equations. Thus, all the parity information is contained in two equations. Similarly,
three independent equations exist when there are three redundant measurements, and so
forth. The number of independent parity equations determines the number of
components in the parity vector, which is the same as the number of dimensions in

parity space.

Consider a scenario where one redundant measurement is available. In this case, the
parity vector becomes a scalar. The detection statistic is given by p, which is assumed to
be normally distributed. Figure 2 (top) shows the probability density function (pdf) of p
when no bias exists in any of the voltmeter measurements. Note that the mean is zero
because the pdf has not been shifted by a measurement bias. A fault is declared when
the absolute value of p exceeds the detection threshold (Tp). Note that integrating the
tails of the pdf outside +Tj, yields the probability of a false alarm in parity space.

Figure 2 (bottom) illustrates the existence of a bias in one of the measurements. In this
example, the pdf of the detection statistic p is shifted over by a mean value greater than
To. Since there is now a fault, the area under the curve within the limits of =Ty, is the

probability of a missed detection in parity space.

If an alarm is raised in parity space, it can either be a correct alarm or a false alarm in
estimation space. If no alarm is raised in parity space, it can either be normal operation
or a missed detection in estimation space. Note that the radial position error lies in
estimation space, while the detection statistic lies in parity space, see Figure 1. In the
case of classical hypothesis theory, a false alarm is considered to be any fault detected
during normal operation. Likewise, a missed detection is simply considered to be any
undetected fault. While these ideas are basically true, it is important to understand how
they relate to estimation space and parity space. Because the probabilities of false alarm
and missed detection are specified in parity space, the corresponding probabilities of
false alarm and missed detection in estimation space are slightly different.

2.4  Fault Detection Algorithm

A least squares approach can be used for fault detection. The linearized relationship
between the measurements and the user state is given by:

y=H§ (2.5)

where: y = measurement vector
B = user state vector

H = data matrix

The dimension of H is n-by-m, where n is the number of measurements and m is the
dimension of the user state vector. The state vector B consists of the user position
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coordinates and other navigation states such as clock offset with respect to, for instance,
GPS time, as required by the navigation solution.

Three cases exist:

1) n < m : Underdetermined system
2) n = m : Exactly determined system
3) n > m : Overdetermined system

Algorithms for managing the redundant measurements in case 3, an overdetermined
system, form the basis of fault detection. In the presence of redundant signals, a parity
equation can be derived from Equation 2.5. The objective is to factorize the data
matrix, H, such that the least squares solution and the parity vector can be obtained
separately. Parity space is orthogonal to estimation space; therefore, parity space is the
left nullspace of the H matrix. Parity space can be obtained by zeroing the last n-m rows
of H. This requires that H be factorized into two matrices. One matrix has zeros on the
last n-m rows, while there are no particular requirements for the second matrix.
However, it is preferable for the second matrix to be orthonormal to simplify further
calculations. One such factorization is the QR factorization:

H = QR (2.6)

This factors H into an orthonormal matrix Q (Q'Q = I) and an upper triangular matrix
R [9]. R contains (n-m) rows of zeros, reflecting that H includes data from redundant
measurements. Substituting Equation 2.6 for H in Equation 2.5 yields:

¥ = QR
QTy = QTQRS 2.7)
Q'y =Rf

Let R be partitioned into a m-by-m upper triangular matrix U and (n-m) rows of zeros,
denoted by 0. Partition QT conformably into Q; and Q,;:

Qp Y U B1
: (2.8)

Q, /Iy o )(s,

The least squares solution is given by:

B=U"Qy 29
Due to the way R is partitioned, U is nonsingular. Note that Equation 2.9 is identical to
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the least squares solution using the generalized inverse of the H matrix. By substitution:
HTH)HT Substitute H = QR
= [(QR)"QR] ' (QR)"
= RTQTQR]'RTQ"

Q
= RTRI"'RTQT  Substitute QT = |---
Q
U
and R = |---
0
U\ Qg
o o) -—-|| T ¢ 0)f---
0 Q,
Q
= (UTY(UT ¢ 0)f---
Q
= U-IU-TUTQp
- UQ, ~ ETHTHT = UQ,

In the absence of measurement errors, the parity equation is formed from the lower
partition of Equation 2.8:

Quy =0 (2.10)
Since y contains measurement errors such as noise (€) and measurement biases (b), a
parity vector (p) can be defined as (replace y by y - e - b):
P=Qy-Qe-Qb
p=-Qe-Qpb

(2.11)

Although the measurement noise and bias errors are not known, their components in
parity space are given by Equation 2.11. The parity vector can be used as a detection

9



function for declaring faults.

It is now possible to determine the statistics of the parity vector. The expected value
E(p) is given by (assuming that the measurement noise is Gaussian with zero mean):

E@ - -Q,b 2.12)

Assuming that the measurement noise is also uncorrelated and that each is distributed
with the same variance, then the covariance matrix for p is:

Cov(p) = ¢’I (2.13)

The result is a parity vector with normally distributed elements:

[(x=p?
£(x) - 1 . (ﬁ) (2.14)
oy2n

This allows us to choose Py, and Py, thus fixing the detection threshold T, and the
minimum required bias in parity space (py):

P, = P(|p|>Tp) = erfc

Tp ] (2.15)
02

where erfc(z) = il e dA (2.16)

P = P(|p|<Ty = %erfc

s ‘TD] 2.17)
0y2

by = Tp + 0y2erfc'2P,p) (2.18)

Equation 2.17 shows that a bias must exceed the measurement noise for reliable
detection. A minimum bias is required for Py, to be satisfied. Good measurement
geometry makes it easier to detect a bias. The matrix Q, is used to calculate the
minimum detectable bias. A bias is evaluated for each measurement by rotating parity
space such that the measurement axis lies along the "X-axis" in parity space [10]. This
rotation does not change the statistics of parity space, although a detection statistic must

10



be calculated for each measurement. For example, if 7 GPS satellites are being used,
then 7 detection statistics must be calculated.

2.5 Example with Three Voltmeters

It is helpful to consider a simplified example so that a better understanding of the
algorithm may be gained. Consider three noisy voltmeters measuring a d.c. voltage (e.g.
a battery). This scenario allows us to explore fault detection and isolation with the
fewest number of measurements.

2.5.1 Three Voltmeters--Fault Detection

Since each voltmeter is weighted equally, the data matrix is given by:

H =

[ S

The QR factorization on H could result in:

-0.5774 -0.5774 -0.5774
Q =|-05774 0.7887 -0.2113
-0.5774 -02113 0.7887

-1.7321
R = 0
0

Note that Q and R are not unique and, in fact, depend on the QR algorithm that is
used. This example is helpful since parity space is two-dimensional and it is easy to
demonstrate the fault detection algorithm graphically. In order to determine the
measurement axes in parity space, Equation 2.8 is applied with the appropriate
partitions. Note that the state vector B reduces to a scalar because we are only
measuring a single physical quantity, a voltage:

11



-0.5774 -0.5774 -0.5774 -1.7321

Y1
__________________ -
-05774 07887 -05774 |2 0 P,
~05774 -02113 0.7887 V3 0

According to Equation 2.9, the least squares solution is simply the average of the three
measurements:

1
B, = ;(yl+y2+y3)

The lower partition yields the parity equation:

Y

-05774 07887 -02113)|
- |-05774 -02113 07887 )|
b

0=Qy

Where the rows of Q, are orthogonal, but the columns are not. If y contains
measurement noise (¢) or bias errors (b), then y is replaced by y-e-b. Thus, a parity
vector can be defined as:

Py
= { ] = Q,(-e-b)

P,

Parity space is spanned by the column vectors of Q,; an axis associated with each
voltmeter is described in parity space by the column vectors of Q,. These axes are
plotted in Figure 3. An error in measurement i will lie on axis i in parity space. Again,
it should be noted that the parity vector is not a direct measure of the actual error.
Many error combinations can yield the same parity vector [11].

Let the measurement noise have a standard deviation of o = 0.1 volts for each of the

three voltmeters. Choosing Py, to be 0.1 and using Equation 2.15, the detection
threshold Ty, is found:

12
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P
Ty =0 2erfc"(—;—A) = 0.213 volts

Also, the minimum bias in parity space for detection, p,, can be calculated (choose Py,
to be 0.01):

iy = Tp + 0y2erfc!(2P,,) = 0.446 volts

Thus, the minimum bias, b, in one of the voltmeter measurements must be:
By = (norm of a column of Qp)b
Hy = 0.816b
b = 1.224u,, = 0.546 volts

Using Py, and b, the protection radius (R,) can be set. There are two errors to protect
against--measurement noise and bias errors. Therefore, R, is the sum of R, . and R,,,;:

noise

R . = % /2erfc(0.01) = 0.149 volts
V3

R, - —;—(0.546) - 0.182 volts

R, = R + Ry = 0331 volts
This tells us that if both kinds of errors are present, then there is a 0.99 probability of
detecting a voltage error of 0.331 volts or more. Without bias errors, Py, will be 0.1 and
Pyp will not exceed 0.01. If there are bias errors, the overall alarm rate will increase
(both false and true alarms). However, Py, will never be higher than 0.01.

2.5.2 Three Voltmeters--Fault Isolation

Three detection statistics are formed (one for each measurement), and an alarm is
raised if any | d, | > Tp (k = 1, 2, 3). Once alarm status has been reached, the next
step is to attempt isolation. The fault detection algorithm is applied to three subsets
created by leaving out one measurement at a time. By omitting the failed measurement,
the detection function for that subset should lie within T,. By omitting a healthy
measurement, the detection function for either of those subsets should exceed Tp. Table
1 shows the various isolation scenarios. Positive isolation is achieved when two subsets
cause an alarm and one does not. Only 3 of 8 scenarios provide conclusive fault
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Scenario| A&B A&C B&C OUTCOME

1 0 0 0 ?
2 0 0 1| ?
3 0 1 0o | ?
4 1 0 0 ?
5 1 1 0 | AisBAD
6 1 0 1 | BisBAD
7 0 1 1 | CisBAD
8 1 1 1 | ?

0 = no alarm

1 = alarm

? = inconclusive

Table 1 Isolation Scenarios for the Three Voltmeter Example.
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isolation. For example, if voltmeter A is bad, then the two subsets containing that
measurement cause an alarm. The subset consisting of voltmeters B & C does not raise
an alarm. Thus, voltmeter A is isolated as the faulty one. The inconclusive scenarios
would be caused by, for instance, a false alarm. When there are no errors in the
measurements, the results of the isolation algorithm are likely to be inconclusive.

Figure 4 is a pictorial representation of the isolation problem for the 3-voltmeter
example. The parity vector pointing to point I in parity space might give inconclusive
results; however, point I is more likely associated with measurement 2 than with
measurements 1 or 3. Point J could belong to 1 or 2; however, since J is far away from
both 1 and 2, this situation is unlikely. For point J to occur, there would have to be a
large amount of measurement noise. In general, the detection threshold is large enough
such that the probability of being far removed from a measurement axis is very small.

Figure S shows the fault detection and isolation state diagram, not only for the three-
voltmeter example, but also for integrated navigation systems in general. From the
diagram, it can be seen that the probability of a false alarm should be very small,
because it results in either removing a healthy measurement or in system unavailability.
The latter is very undesirable, especially for a sole means navigation system.
Furthermore, the probability of a wrong isolation should also be minimized. It is
obviously a serious condition when a fault is declared (correctly) but a healthy
measurement is discarded.

Note that a missed detection occurs when an unacceptable error in measurement space
is not flagged in parity space. The "can’t detect" link describes a situation in which not
enough measurements are available to run the fault detection algorithm, or if the
calculated protection radius is greater than the required alarm threshold. Even with
enough measurements to calculate a solution, without redundancy, the system must be
declared unavailable if it depends on FDI for integrity assurance. One goal of current
research is to define the transitional probabilities of the state diagram given the required
state probabilities for sole means navigation systems. It is important to note, though,
that this tree does not represent the whole story. For instance, once a faulty
measurement has been removed from the solution, how should it be maintained?
Should it be checked periodically to see if it is back within tolerance or should it be left
out for the rest of the mission? These questions require further study so that an
effective management scheme is implemented for governing the system in the presence
of FDI data.

2.5.3 Three Voltmeters--Simulation Results
Simulations were run by taking 1000 samples of measurement noise (characterized by a

o of 0.1) for each of the voltmeters. As was previously mentioned, the thresholds were
designed for a Py, of 0.1 and a Py, of 0.01. By applying the least squares solution given
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Measurement axis 3

Measurement axis 1 '

Figure 4 Example of Isolation Problem for Three Voltmeters.
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Figure 5 Fault Detection and Isolation State Diagram.
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by Equation 2.9, the true voltage error can be found:
True Voltage Error = U~'Qge (2.19)

Figure 6 is a plot of the true voltage error for each sample. The solid line is the
protection radius for no bias (R, = R,,.). The 12 points outside R, represent actual
error states, 11 of which were not detected resulting in a sample Py, of 0.011. Figure 7
shows how the detection algorithm handled the various voltage errors. All cases which
are termed "normal operation" have been removed. This illustrates the missed
detections and the false alarms, as well as one true alarm. To see how the detection
algorithm works, though, a view of parity space for these cases is helpful. Figure 8
shows all 1000 measurement points in parity space. Note that they are clustered around
the origin because there is no bias in any of the voltmeters. The "cloud" effect is due
entirely to the measurement noise. Figure 9 shows the missed detections and false
alarms in parity space (normal operation cases have been removed). The detection
threshold is a circle about the origin which can be visualized by examining the plot. The
false alarms and the true alarm lie outside this circle, while the missed detections lie
inside the circle. Figure 10 shows the outcome of the isolation algorithm for those cases
that caused an alarm (either false or true). Some cases resulted in false isolation, while
others were inconclusive. Isolation in parity space is shown in Figure 11 for these
points.

Next, consider a random bias in voltmeter 2 which is characterized by a uniform
distribution between -2.5 and 2.5 volts. This means that, in addition to the noise in each
measurement, voltmeter 2 will have a bias somewhere between -2.5 and 2.5 volts. This
will provide a better understanding of FDI in parity space. The protection radius will be
extended now to protect against a bias (R, = R, + Ryy,). All other parameters
remain the same (o = 0.1 volts, Pg, = 0.1, Py, = 0.01). The true voltage error is shown
for all 1000 samples in Figure 12. The errors are much larger now due to the random
bias. Figure 13 shows how the detection algorithm performed. All points beyond R,
were detected -- thus, there were no missed detections and P,,, was less than 0.01.
There are still some false alarms, however. All data points as seen in parity space are
shown in Figure 14. The cloud caused by the measurement noise has now been
stretched along the axis for voltmeter 2 because of the random bias. The detection of
faults in parity space is shown in Figure 15 with the normal operation points removed.
There is a transition as a function of the length of the parity vector from false alarms to
true alarms. This transition zone is necessary to allow for measurement noise. In the
absence of measurement noise, the number of false alarms would be reduced to zero,
and the transition zone would not exist. The results for the isolation algorithm
(triggered by an alarm) are shown in Figure 16 for true voltage error. There are false
isolations within R, correct isolations outside R, and inconclusive isolations scattered
throughout. Figure 17 shows these points plotted in parity space. The false isolations
are associated with false alarms. These are cases where the bias in voltmeter 2 did not
cause R, to be exceeded, even though the detection threshold was crossed in parity
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space. Many of the errors were correctly isolated by using the detection algorithm
applied to subsets of 2 voltmeters as outlined in a prior section. However, this algorithm
seems to be a bit conservative because many of the unavailable cases could well be
isolated to voltmeter 2. In fact, a corridor is defined along the axis which would indicate
that a fault is only isolated if the point is within a certain distance from the axis. It
seems more prudent to define a cone about the axis extending outward so that many
more points could be correctly isolated. It is possible to force the isolation by choosing
which axis a given point is most likely associated with. This is depicted in Figure 18.
Fortunately, there were no wrong isolations, and most of the true alarms were correctly
isolated to voltmeter 2. Recall that a wrong isolation means that a bad measurement
exists, but a good measurement was removed from the solution. In addition, all false
alarms which could not be isolated and hence resulted in unavailability, are now turned
into false isolations. In the case of a false isolation, no fault exists, but the alarm was
raised and consequently, a good measurement was removed from the solution. False
isolations are preferred over unavailability, because a false isolation does not disable the
navigation function.

In addition to the forced isolation technique given above, an overall isolation strategy is
needed. For instance, what if two measurement axes are close together in parity space?
Should both measurements be discarded if the parity vector is near them? Also, it may
be necessary to include a buffer between axes so that the probability of a wrong isolation
is reduced. These questions are not within the scope of this report, but the selection of
an isolation strategy is a very important issue which must be studied carefully for sole
means of navigation systems.

3. AVAILABILITY OF FAULT DETECTION FOR THE GLOBAL POSITIONING
SYSTEM

3.1 Background

The Minimum Operational Performance Standards (MOPS) for the Global Positioning
System (GPS) have been developed by Special Committee 159 of RTCA for
supplemental airborne navigation equipment using GPS [12]. Except for availability and
integrity, GPS will satisfy all performance requirements. Initially, the GPS receiver will
rely on receiver autonomous integrity monitoring (RAIM) to provide integrity assurance.
This means that all fault detection is to be performed in the receiver, although a GPS
Integrity Channel (GIC) is anticipated to be available in the future. The GIC will
consist of a ground segment that monitors the GPS signals continuously and a space
segment that broadcasts GPS integrity information via geostationary satellites. Integrity
assurance can also be achieved by using additional navigation sensors, such as an
altimeter, Loran-C, or GLONASS. This section will show that GPS by itself does not
provide enough measurements to allow "adequate” fault detection. Thus, it will be
shown that GPS must be augmented by some other system in order to meet
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requirements for sole means navigation. Sole means availability requirements are
currently not defined, but are anticipated to be more stringent than supplemental
availability requirements [13]. Therefore, the availability of Loran-C, a widely accepted
supplemental navigation system, is used as a reference for GPS. A parametric computer
analysis will be presented to show the availability of fault detection for GPS.

The availability of a navigation system is the percentage of time that the system can be
used at a certain location [14]. For GPS, four measurements are required for the
solution of three-dimensional position and clock bias. Also, the relative geometry of the
satellites must provide a sufficiently small Horizontal Dilution of Precision (HDOP).
For fault detection, an extra measurement is necessary to allow for a parity equation.
Thus, the availability of integrity depends on having a redundant measurement. Note
that for sole means navigation, two redundant measurements are required in order to
isolate faults. A method for determining the availability of fault detection for GPS has
been incorporated into a computer model. Much uncertainty exists with respect to the
final implementation of GPS in terms of satellite constellation and maintenance.
Therefore, simulation results are provided as a function of satellite constellation and
satellite failure statistics. Also, different accuracy requirements exist for the four phases
of flight: oceanic, en route, terminal, and nonprecision approach. To accommodate this,
the availability is provided as a function of the GPS geometry in terms of HDOP. The
root-mean-squared (rms) two-dimensional horizontal position error (2D-error) and the
rms range measurement error (R-error) are related by the HDOP as follows:

2D -error = HDOP *R -error (3.1)

For instance, consider a typical rms range measurement error of 33.3 meters and an
HDOP of 1.5; the rms horizontal position error would be 50 meters. Refer to reference
[15] for the HDOP calculation. In the case of constant range measurement error
statistics, a higher HDOP value is directly proportional to a larger two-dimensional
(horizontal) position error.

3.2 Computer Simulation Program

A coverage model for GPS has been developed for use on a Personal Computer (PC).
A Markov model has also been implemented for failure scenarios. Both programs are
written in FORTRAN and their output is used by a third program to determine
availability. For each location and time, the coverage model provides the number of
visible GPS satellites and their geometry. If the geometry (HDOP) or the number of
satellites is not sufficient for fault detection, an outage is declared. This is repeated for
all possible single satellite failures and all simultaneous satellite failures of up to 6
satellites. The resulting outages are then combined with their corresponding
probabilities of occurrence as determined by the Markov model to arrive at the average
availability of fault detection.
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3.2.1 GPS Coverage Model

By determining the geometry of visible satellites, the coverage model provides outage
information for a given location at a given time. GPS satellites can then be failed to
assess the effect on the best available HDOP. A method is presented which allows for
the failing of visible satellites only, rather than failing all possible combinations of
satellites. This method greatly reduces the number of computations. The equation for
finding the number of combinations of n out of m satellites { COMB(n:m) } is given as:

COMB(n:m) = ﬁ’_m! (3.2)

For instance, consider a 24-satellite constellation with 4 failed signals. There are 4-out-
of-24 different failure combinations possible:

24!

= 10626 combinations

Next, consider taking combinations of 4 failures out of 7 visible satellites:

7!

COMB(4:7) = m

= 35 combinations

For this scenario, the number of failure combinations to be considered is reduced by a
factor of approximately 300. It is important to realize that this approach does not cover
all failure scenarios since only visible satellites are failed. However, it is computationally
simple to account for the other failure scenarios in the program that processes the
outage records.

The GPS program calculates coverage based on available measurements at each search
point over a period of one day, with a time increment of 5 minutes. A satellite is
declared visible if its elevation angle is greater than 7.5 degrees with respect to the
horizon. The algorithm is as follows:

Initialization
FOR each location
FOR each time
- calculate GPS visibility
- calculate HDOPs for all subsets of usable signals
(elevation angle > 7.5 degrees)
- write coverage data to file
FOR all combinations of up to 6 simultaneous failures
- determine the best value of HDOP for each scenario
- check for integrity
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- IF no integrity, write outage to a file
END failure loop
END time loop
END location loop

An output file with integrity outages is created. These are caused by a lack of a
sufficient number of measurements or by poor geometry (large HDOP). Relaxing the
HDOP specification will cause fewer outages; however, this does not provide 100%
availability of fault detection. A limit is imposed by the number of receivable signals.
At least 4 measurements are required to solve for 3-dimensional position and clock
offset, and 5 measurements are needed for fault detection. Even with 5 or more signals,
integrity is still lacking if fewer than 5 subsets have an HDOP lower than the specified
limit. The simulation will show that more measurements are needed (GPS must be
augmented) in order to detect and isolate faults.

Various scenarios can be examined based on different simulation parameters. For
instance, one option is the inclusion of the altimeter as a measurement. The altimeter is
implemented in the program as a satellite vehicle located at the origin of the Earth-
centered, Earth Fixed (ECEF) coordinate system. It is assumed to never fail, although it
could be included in the Markov analysis if its Mean Time To Failure (MTTF) and
Mean Time To Repair (MTTR) were specified. For this analysis, however, the altimeter
is either included as a signal or not included at all. It should be noted that using the
altimeter introduces a larger measurement error. However, for enroute navigation and
for nonprecision approaches an altimeter correction can be made. A problem does exist
in the terminal area because a descent or climb can cause large absolute altitude errors
(up to 1000 ft) [16]. Approximately 70% of the altimeter error is included in the
horizontal position error (in this case, 700 ft). Even so, the results for each case can be
compared to see what significance the altimeter has in improving GPS availability. Also,
the HDOP limit can be changed to see what its effect is on availability. Since availability
is a function of location, the simulation is run for several different sites.

3.2.2 Markov Model

For each failure scenario identified by the coverage model, a corresponding probability
of occurrence must be found. These probabilities are a function of the mean time to
failure (MTTF) and the mean time to repair (MTTR) of the GPS satellites. The design
lifetime of a GPS satellite is 7.5 years, which is used for the MTTF. The repair rate is
dependent on the launch schedule. If a new satellite is placed in orbit every 4 months,
then the MTTR is 2 months. This is approximately the repair rate necessary to keep a
21-satellite constellation operational over a long period of time. A shorter (more
optimistic) MTTR is included in the analysis since the actual repair rate is governed by
the maintenance of the constellation. For example the 21 Primary constellation (21
satellites plus 3 active spares) will be maintained by a launch-on-schedule policy [17].
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Launches will be scheduled to take place every 3 months, resulting in a MTTR of 1.5
months. Short term failures requiring relatively small repair times do not have a
significant effect on availability and are omitted [18]. Therefore, 22 states are defined
ranging from 0 to 21 failures (25 states for the 21 Primary constellation). When
altimeter aiding is chosen as an option, the altimeter is assumed to never fail; thus, it is
not included in the Markov analysis. For the purpose of this report, the Markov model
is truncated to 8 states. The first state represents the scenario with no failures, and state
number 8 represents all scenarios with 7 or more failures.

Each state in the Markov model has transitional probabilities assigned to it. The failure
rate (A) is the reciprocal of the MTTF:

2= 1 (3.3)

To obtain a transitional probability (Pg), the failure rate is multiplied by a time step (T):
Py = A*T (3.4)

Since no probability can be greater than 1, the time step has a definite upper bound.
The actual criterion for the time step, however, is that it be chosen small enough to
ensure that only one failure or one repair occurs during that length of time. In practice,
the time step is reduced until there is no significant change in the simulation results.
The transitional probabilities for repairs are treated the same way:

1
- 3.5
m (35)
P, = p=T (3.6)

where u is the repair rate and Py, is the transitional probability of repair. Each
transitional failure probability is multiplied by the number of "healthy" satellites
available. Note that this multiplication is only justified for small transitional probabilities
[19]. Due to a restricted launch schedule, each repair probability is singular,
independent of the number of failed satellites. An example Markov diagram is given in
Figure 19 for a 21-satellite constellation. Each circle represents a failure state. The
Markov diagram can be used to derive a stochastic transitional probability matrix (P).
The elements of this square matrix contain transitional probabilities. The probability of
remaining in a particular state is [1 - (all probabilities of leaving that state)]. These
particular probabilities are located along the matrix diagonal. One requirement is that
all the probabilities in a row add up to one. Each row of 8 elements contains, at most, 3
transitional probabilities; all other elements are zero. The basic trichotomy is
comprised of the following probabilities: 1) leaving the state due to a failure, 2) leaving
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the state due to a repair, and 3) remaining in the state.

The method for obtaining the final state probabilities is to successively multiply the state
vector s by the state transition probability matrix P. Starting with the initial conditions
(so), the multiplications are carried out as follows:

after 1 time step: s, = s,P
after 2 time steps: s, = (s,P)P = s,P? (3.7)
after n time steps: s, = s,P"

Since the state vector stabilizes to the time-limiting state probabilities after a large
number of multiplications, it is not necessary to raise P to exactly the power n. The
calculation proceeds as follows. The number of time steps n is first determined from the
mission time and the time step:

P (mission time) (3.8)

T

The matrix P is then raised to m, the nearest power of 2 (m > n). This is achieved by
successive squaring of the transition matrix:

P2 =P P;
P4 = P2P%
P8 = P4P4;
(etc.).....

For large n this method is very economical calculation-wise, since only log,(m) matrix
multiplications are required.

The time limiting state vector is found when the changes in the state vector, s,
probabilities are small for an additional multiplication. Table 2 shows the final state
probabilities for different MTTRs using both the 21- and 24-satellite constellations. The
probabilities drop off rapidly which indicates that very rarely will a multi-failure scenario
occur. For this analysis, up to 6 satellites are failed; a more complete analysis would
include failure of more satellites, but since the probability of being in a 7-failure state is
small for most cases, there is not a significant loss of accuracy in stopping at 6 failures.

3.2.3 Integration of Coverage and Markov State Probabilities

A third program combines the coverage and integrity output data with failure scenario
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MARXOV STATE PROBABILITIES
21 24
SATELLITES SATELLITES
NUMBER MTTR MTTR
PAILED (months) (months)
1 1.5 2 1 1.5 2
0 .769929 .658382 | .550809 .737222 | .610328 | .489403
1 .179650 .230432 .256994 .196593 .244128 | .260906
2 .039922 | .076810 .114158 .050240 .093579 .133210
3 .008428 .024322 .048149 .012281 .034310 .064996
4 .001686 | .007296 .019225 .002866 .012007 .030238
5 .000318 .002067 .007244 .000637 .004001 | ,013383
6 .000057 .000551 .002567 | .000134 .001267 .005623
27 .000009 .000138 .000853 .000027 .000380 .002240

Table 2 Markov State Probabilities for 21- and 24- Satellite Constellations.
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probabilities from the Markov model to calculate the availability of fault detection. This
program also accounts for failure scenarios containing satellites which are not visible to
the user. First, the straightforward processing of the outage records will be discussed.

Each outage is assigned a state probability (P,) from the Markov model. Since the
outage only occurs at the current time, the Markov state must be multiplied by the
probability that the outage occurs at a particular time (P,). P, is simply the quotient of
the length of the outage (T;,)) and the mission time (T,):

) (3.9)

Finally, the product P,*P_ must be divided by the number of possible failure
combinations of n satellites out of a total number of m in the constellation
{COMB(n:m)}. For example, if 2 satellites are failed from a 21-satellite constellation,
there are 210 possible combinations {COMB(2:21)}. Thus, the percent unavailability
caused by one outage is given by:

Pm*Pt

S o (3.10)
COMB(n:m)

% unavailability =

These values are totaled for all outages, but the sum does not yet represent the total
unavailability.

Each outage is caused by a particular set of failures containing up to 6 visible satellites.
At first glance it seems unnecessary to consider the failure of non-visible satellites since
these won’t cause outages at the specified location for which unavailability is being
determined. However, there are failure combinations that contain some visible satellites
and some non-visible satellites. If the failed visible satellites from a set of this nature
cause an outage, then this scenario must be accounted for in the unavailability number.
This circumstance is not included in the failure simulation and must be taken care of in
the program that processes the outages. An example is given to further illustrate this
point.

Consider a case where the user has 5 satellites in view (just enough for fault detection)
and 16 below the specified elevation mask angle (7.5 degrees). A failure of any one of
the visible satellites will cause an outage (assuming no altimeter aiding). Each of these
cases is contained in the failure simulation. Consider now a two-failure state where one
visible satellite and one non-visible satellite are failed. This causes an outage to the user
although the two-failure state has a lower probability than the one-failure state. Still,
though, this appears to the user to be a single satellite failure. For this case, one visible
satellite could be paired with any of the 16 non-visible satellites in a two-failure state.
Since there are 5 visible satellites, there are 80 of these combinations which are
neglected in the failure simulation. Since there are only 210 possible combinations of 2
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out of 21 satellites, 80 is too big a number to ignore. These cases are weighted less
since the Markov probability for a two-failure state is less than that for a one-failure
state, but are still significant and must be included. For this example, only 10
combinations of 2 visible failures are accounted for in the failure simulation; the
additional 80 two-failure states described above are also weighted with the same Markov

probability.

The above example can be generalized for all failure scenarios. For instance, 3 satellites
could fail (1 visible, 2 non-visible) and an outage would still occur; 4 satellites could fail
(1 visible, 3 non-visible), and so on, up to 6 satellite failures (1 visible, 5 non-visible).
Continuing this analysis, 2 visible satellites can fail along with combinations of as many
as 4 non-visible ones, 3 visible satellites can fail along with combinations of up to 3 non-
visible ones, and so forth. An example algorithm for the case of 3 failed visible satellites
follows:

Three visible failures:

- fail all combinations of 3 visible satellites (this is the straightforward case
already calculated in the failure simulation)

- fail 4 satellites, 3 visible and 1 not

- fail 5 satellites, 3 visible and 2 not

- fail 6 satellites, 3 visible and 3 not

A similar algorithm is used for 1, 2, 4, and 5 visible failures. The 6-failure state is
treated differently since it is the maximum number failed. Only the straightforward case
is considered where combinations of 6 visible satellites are failed. However, the Markov
probability for the 7 or more failure state is added on to the percent unavailability at the
end of the prior calculations to arrive at the final answer. This accounts for such cases
as 7 failures with 6 visible and so forth.

The supplemental failure states can be calculated based on the outage records produced
by the failure routine. The actual algorithm for a 21-satellite constellation is given
below:

% unavailability = 0.0

FOR all outage records
- f = number of visible failures that caused the outage
- % unav. = % unav. + P, * P (f failures) / COMB(f:21)
FOR i = f+1 until 6
- % unav. = % unav. + P, * P (i failures) *
COMB(i-f:#non-visible) / COMB(i:21)
END supplemental failure loop
END outage record loop

As was previously mentioned, only the straightforward case is calculated for 6 failed
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satellites { P, * P (6 failures) / COMB(6:21) }. To arrive at the final number for
percent unavailability, the marginal Markov state probability is added in {P,(= 7
failures) }, to account for all neglected failure scenarios.

3.3 Simulation Results

Figures 20 and 21 show the availability of fault detection (or RAIM) for GPS averaged
over 3 locations: San Francisco (SFO), Denver (DEN), and Washington, D.C. (DCA).
The simulation was run for these 3 locations for a period of 1 day and a time increment
of 5 minutes. GPS orbital parameters for the Optimal and Primary constellations are
taken from Green [20]. Up to 6 simultaneous failures were simulated with each scenario
weighted by a Markov state probability. The state probabilities were obtained from the
Markov model with a mission time of 2 years and a time increment of 1 minute. After
the results were obtained for each location, the numbers were averaged to simplify the
interpretation of the results.

Figures 20 and 21 show that availability increases as a function of allowed HDOP and is
limited by the number of visible satellites (even with a high HDOP limit, the availability
is not 100%). Still though, as the HDOP limit is increased, there is a significant increase
in availability of fault detection. For example, if the HDOP limit is increased from 3 to
60 in the case of the Optimal 21 constellation (no altimeter, MTTR = 2 months), a gain
in availability from 66.0% to 94.8% is obtained. Also, as expected, a more optimistic
MTTR increases the availability.

The Optimal 21 constellation with altimeter aiding produces Fault Detection
availabilities very similar to the 21 Primary constellation without altimeter aiding. Since
the 21 Primary constellation actually contains 24 satellites and each one is in view at a
particular location an average of 8 hours per day, an average of one extra signal is
available over the entire day compared to the Optimal 21 constellation. The altimeter
also contributes one extra signal, so that it is predictable that the results for 21 satellites
plus altimeter would closely resemble the results for 24 satellites without altimeter.

3.3.1 Discussion of Results

Loran-C availability for a transmitting station is greater than 99.9% [21]. At least three
stations are required for a position fix resulting in a Loran-C triad availability of greater
than 99.7%. Since Loran-C is widely accepted as a supplemental navigation system, the
Loran-C triad availability will be used as a reference for GPS.

For enroute navigation, the current navigation system accuracy requirement is 1.5

nautical miles (95%) which would require a HDOP of better than 41.7 (see Equation 3.1
with a typical R-error of 33.3 meters and recognizing that the 95% position error is
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Figure 20  Availability of Fault Detection without Altimeter Aiding.
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Figure 21  Awvailability of Fault Detection with Altimeter Aiding.
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approximately twice the rms position error) [22]. Similarly, the system accuracy
requirement for a nonprecision approach is 0.3 nautical miles which requires a HDOP of
better than 8.3. If RAIM is used for integrity assurance, the availability of fault
detection must be used for the system availability. Without altimeter aiding, Figure 20
shows that at least the 21 Primary constellation is required with a MTTR of 1 month.
Even then, the availability of the nonprecision approach is marginal. With altimeter
aiding (Figure 21), the Optimal 21 constellation with a MTTR of 1 month would satisfy
the availability requirement for enroute navigation. The 21 Primary constellation with a
MTTR of 1 month would satisfy both enroute and nonprecision approach requirements.

34 Conclusions Based on the Simulation Results

From Figures 20 and 21 it is seen that there are a few ways to improve the availability of
fault detection for GPS. If the HDOP requirement is loosened, the resulting number of
RAIM outages during the day is decreased significantly. A large HDOP is the result of
poor satellite geometry with respect to the user. However, allowing for a larger HDOP
also means that the position accuracy is larger.

Another way to reduce outages is to utilize the altimeter as an extra measurement.
From the plots it is seen that using the altimeter significantly improves RAIM
availability. The altimeter can be thought of as a geostationary satellite located at the
origin of the Earth-Fixed, Earth-Centered (ECEF) coordinate system. Therefore, the
inclusion of a geostationary satellite in this analysis would have affected the outcome
much the same as the inclusion of the altimeter did. Note, though, that a geostationary
satellite would carry the same failure statistics as the other satellites in orbit, and would
have a somewhat different effect on HDOP than would the altimeter.

If a more optimistic MTTR is used, the availability increases; the longer a measurement
is inaccessible, the lower the availability will be because it is time dependent. Changing
the MTTR from 2 months to 1 month typically increases the availability of fault
detection by about 2-4%. The 2 month repair time is based on the placing of a GPS
satellite in orbit every 4 months. It is hoped that this is a conservative estimate since the
MTTR depends on the actual maintenance of the constellation.

There is expected to be a 98% availability of at least 21 operational satellites for the
Primary constellation [23]. From Table 2 it can be seen that for a MTTR of 1.5 months,
the probability of at least 21 operational satellites is about 98.2%. Therefore, a MTTR
of 1.5 months can be considered a realistic estimate.

Although the analysis presented in this section is based on the best available information
at this time, clearly the results strongly depend on the maintenance of the GPS satellite
constellation. Therefore, the availability numbers should not be interpreted as absolute
quantities but are meant to provide an understanding of the impact of RAIM
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requirements on the availability of GPS. It has been shown that by using optimistic
values for MTTR and allowed HDOP, GPS can meet requirements for availability of
fault detection; thus, GPS could meet requirements for supplemental navigation. The
next step, however, is to define requirements for a sole means navigation system using
GPS. Since this requires fault isolation as well as detection, 2 extra measurements are
needed. It is apparent from the simulation that GPS by itself would not provide enough
available measurements to perform isolation a high percentage of the time. Therefore,
GPS must be augmented by another system so that more signals are available. The
remainder of this report deals with fault detection and isolation for integrated navigation
systems, including a case study of hybrid GPS/Loran-C. Since fault detection and
isolation techniques are independent of the chosen hybrid system, the results for
GPS/Loran-C apply to other proposed systems, such as GPS/GLONASS and
GPS/Omega.

4. INTEGRATED NAVIGATION SOLUTION

Various methods exist to determine the position of an aircraft. With the proposed
integrated navigation systems, it is necessary to show that different types of
measurements can be incorporated into the solution. For instance, consider the
following equations for range and bearing measurements for two-dimensional position
fixing [24] (range and bearing measurements are different measurement types):

Range: R, = /X-X)?+(Y-Y) (4.1)

X'xi) (4.2)

Bearing: 8, = tan”!| ——
Y-y,

where (X,Y) is the user position and (X, Y;) is the position of transmitting station i. R;
is the distance between the user and station i (placing the user somewhere on a circle
with respect to the station), and ©, is the angle between the user and station i with
respect to North (placing the user somewhere on a line with respect to the station). A
hyperbolic line of position is also used in some navigation systems, and can be defined
by measuring the time difference (TD) between the times of arrival of signals from two
different stations. The equation for a TD is:

m 1, - R w3

where TD; is the time difference for stations i and j, b is the straight-line distance

between the two stations, c is the speed of light, and R; & R; are described by Equation
4.1
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The next step is to show how these different measurements can be used to calculate the
navigation solution. First, it is necessary to derive linear approximations for Equations
4.1 - 4.3. An a priori estimate (X,Y) is used to form a Taylor series expansion, of which
only the first order terms are kept:

aR. aR.
R =R+—t] 308X + —| 20.8Y (44)
i = Rir > lan 8%+ ol

The aircraft state estimate is (X,Y), which is used to calculate the estimate of the
distance to the station (R,). Using this expansion, Equation 4.1 is linearized as follows:

(5") (4.5)
3Y

X-X, Y-y,

R, R,

oR. =

1

A similar procedure is used to linearize the bearing and time difference equations:

Y-v, Xx,-X|(8X
80, = |———i ( ) (4.6)
g & oY
sip, o | L2 Kp X g ¥o¥ YoVl eX 4.7)
el TR, R ) <l R R ey

Equations 4.5 - 4.7 relate user position updates to a range, bearing, or time difference
measurement. Thus, any of these measurements can be used in the navigation solution.
This is the result that allows interoperability of navigation systems such as GPS and
Loran-C. In general, Equations 4.5 - 4.7 can be written as:

60X
5“=”tg (48)

where y, is a measurement value, and h; is a row vector corresponding to that
measurement. If all the measurements are included, Equation 4.8 becomes:

6Y = Hép (4.9)

where Y is a vector containing all of the measurements and B is the user state vector.
H is a matrix containing data related to the geometry of the transmitting stations with
respect to the user, as given by the row vectors h;, Equation 4.9 can be used to solve
recursively for the user state vector.
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If there is an unknown clock offset, for instance in a range measurement, another state
must be included in 8. The measurement is now called a pseudorange:

PR, = R,+B (4.10)

where B is the unknown clock offset. Linearizing Equation 4.10 results in a slightly
altered measurement equation:

6X
5Y (4.11)

6B

8PR, =

More states can be added as necessary to solve for other information, such as velocity or
acceleration. Hybrid GPS/Loran-C, for instance, requires that two clock offsets be
solved for (one for GPS and one for Loran-C). Thus, five measurements are required to
solve for the position of the user.

5. INTEGRATED NAVIGATION SYSTEM INTEGRITY

A Kalman filter should be used in conjunction with a "snapshot" batch estimator to
provide FDI for integrated navigation systems. The Kalman filter is excellent for
detecting step errors or large-sloped ramp errors. It uses the history of the user state to
determine the reasonableness of the next set of measurement data based on estimator
residuals [25]. The advantage is that, for a recursive estimator, no redundant
measurements are required (see Section 1). The disadvantage is that a slowly growing
error, such as a clock drift in a GPS satellite, can corrupt the navigation solution without
a warning being issued to the user. A batch estimator has the advantage that it is
independent of the history of the user state. It can be used to determine if inconsistency
exists within one set of measurements (thus, the term "snapshot" estimator). In this way,
a slowly growing error that might go undetected by a recursive estimator can be detected
when the error becomes too large for accurate navigation. The disadvantage of a batch
estimator is that extra signals are required to perform FDI. However, for integrated
navigation systems, it is anticipated that an abundance of signals will be available, and
therefore FDI will also be available.

An FDI scheme that uses a batch estimator can be characterized by several parameters,
one of which is the allowable radial position error, Rp (also called the alarm threshold).
The idea is that a fault will be declared whenever the horizontal radial position error
exceeds R,. In practice, only the estimated position is available to perform fault
detection. Another specification is the probability of exceeding R,. For detecting faults,
several detection statistics (d,) are calculated (one for each measurement), and if any
one exceeds a pre-calculated detection threshold (Tp), then a fault is declared. The
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probabilities of missed detection (Py,) and false alarm (Pg,) are also critical to the FDI
algorithm. Of Pyp, Py, and R, any two can be fixed while the third can vary. There is
justification for making Pg, and Py, constants in the algorithm, letting R, fluctuate. If
this is the case, R, becomes a function of the measurement geometry. With good
geometry (small HDOP), the alarm threshold is small, and with poor geometry (large
HDOP), the alarm threshold is large. The significance is that the FDI routine is
geometry independent. This is especially important for GPS, since orbiting satellites can
provide vastly different geometry to the user at different times during the day. It is also
notable that changing R, does not necessitate a change in the detection algorithm.

One proposed method for satisfying Pg, and Py, for GPS is to average over all
time/space points in the continental United States via simulation. This defines an
average detection probability (on a per sample basis) for the algorithm. It is easy to
implement in this manner - all it requires is exhaustive testing. However, an average
detection probability guarantees that at certain locations there will be times when the
detection probability is knowingly compromised [26]. This is clearly unacceptable for a
sole means navigation system. A minimum detection probability must be guaranteed at
each time/space point. This is more difficult to implement and analyze, but it agrees
with current navigation systems, such as the Very High Frequency Omnidirectional
Range system (VOR). Each VOR transmitter has a guaranteed level of integrity,
independent of other VOR stations.

Another important parameter in the FDI algorithm is the standard deviation of the
measurement noise (o). As was discussed in Section 2, a large ¢ increases the alarm
rate. Figure 22 shows that both Py, and Py, are a function of o, as shown for a constant
detection threshold of 157 meters. A typical value of o for GPS is 32 meters, for which
Pg, and Py, are highly sensitive. Reference [27] shows that an uncompensated 10%
increase in o can cause an order of magnitude increase in alarm probability. For GPS,
the major error source is Selective Availability (SA). Selective Availability is the
intentional degradation of the signals received by civil users, which increases o. Varying
levels of SA can be expected. Although mathematical tools are available for dealing
with varying noise levels [28], the FDI algorithm would work much better without SA.

It is important to clarify the difference between estimation space and parity space for the
navigation problem. As mentioned in Section 2, an alarm in parity space can mean a
false alarm or a correct detection in estimation space. Parity space is the domain in
which FDI is carried out; estimation space is the domain in which the user position is
solved for. Also, the absence of an alarm in parity space can mean either normal
operation or a missed detection in estimation space. To illustrate, consider a set of 5
GPS satellites. The probability of a bias error in one of the satellites is 10 [29]). Figure
23 shows the two cases - one without a bias and one with a bias. Without a bias, the
alarm threshold, R, should be set such that the probability of exceeding R, is Py, (let
Pyp be 107 for this case). P,y is actually given by (1 - 10)( 10®), which is still roughly
10°. Now let there exist a bias in one of the measurements. This amounts to moving
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the uncertainty "cloud" around the user away from the origin by a certain distance.
Since the probability of being in this state is 10, R, can be set such that the probability
of exceeding it is 10°. As shown in the figure, this still results in the same Py, of 10”.
In summary, the probability of a missed detection is given by:

Puvp = P(no bias) x P(outside R ;. | no bias) +
P(bias) x P(outside R, + Ry, | bias)

As a conservative approach, the larger threshold is usually used (R, + Ry;), thus
protecting against a bias. The point is that, when protecting against a bias, it is not
necessary to set R such that the probability of exceeding it is 10® because the likelihood

that there is a bias is small (10°°).

6. PROTOTYPE HYBRID GPS/LORAN-C RECEIVER

6.1 Hardware Configuration

Figure 24 shows a block diagram of the prototype hybrid GPS/Loran-C receiver. The
GPS receiver is a Motorola Eagle, which is capable of tracking up to 4 satellites (4
channels). The Loran-C receiver is an Advanced Navigation, Inc. (ANI) model 5300,
which is capable of tracking up to 8 Loran-C transmitters (8 channels). The navigation
solutions provided by these receivers are not used in the hybrid solution. Rather, the
raw measurement data obtained from the two receivers is used to calculate an integrated
navigation solution. The two receivers are interfaced to a micro-computer (model AT)
through two serial communication ports. This is the mechanism by which the
measurement data can be collected, processed, and stored. Once the navigation solution
has been calculated, appropriate guidance information is displayed to the pilot on a
course deviation indicator (CDI), a King Radio/Bendix, model KI 206. The CDI is
interfaced to the micro-computer through the parallel (printer) port via an interface
designed and implemented at the Avionics Engineering Center. The prototype receiver
requires an operator to observe the status screen as displayed on the micro-computer
monitor. The operator determines the desired flight path by selecting waypoints stored
in an initialization file. The CDI indicates the cross-track error between the calculated

position and the desired flight path.

6.2  Software Algorithms

The raw measurements are input to the hybrid GPS/Loran-C software, which is executed
in real-time. Thus, the algorithm calculates the navigation solution each time a set of
measurements is collected from the two receivers. This allows for the timely display of
guidance information to the pilot on board the aircraft. The actual algorithm is outlined
as follows [30]:
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Figure 24  Hardware Configuration of the Prototype Hybrid GPS/Loran-C Receiver.

54




initialization
WHILE in operation
DO once per second
check for keyboard input data
IF keyboard input data
process keyboard data
END
check for GPS and Loran-C measurement data, and
request Loran-C data
IF sufficient data
calculate position
determine integrity
END
update CDI and status screen
store all relevant data
END
END
system shut-down

The storing of "all relevant data" includes a file containing the raw measurement data as
collected from the two receivers. This is the data used for subsequent testing of the
fault detection and isolation algorithm as discussed in the next section.

7. LABORATORY TESTING OF THE FAULT DETECTION AND ISOLATION
ALGORITHM USING GPS/LORAN-C FLIGHT DATA

7.1  Flight Test Data

Flight test data collected on August 23, 1990 was used for evaluating the fault detection
and isolation algorithm. The ground track of this flight is shown in Figure 25. The
flight lasted approximately 52 minutes and was conducted in the vicinity of the Ohio
University Airport in Albany. The fluctuation in the ground track is due to failures
injected during the flight. The pilot was instructed to follow the course deviation
indicator; therefore, the aircraft was flown slightly off course during the simulated
malfunctions. The discontinuity in the flight track is due to a shut-down that was used
to save the first part of the flight, and to switch satellites. During the initial section of
the flight, one of the satellite signals was not being received, so it was replaced by a
satellite with a higher elevation angle with respect to the horizon. During this test, the
GPS/Loran-C software used up to 4 GPS satellites and up to 3 Loran-C transmitters
resulting in a total of 7 measurements. During the first portion of the flight, only 6
measurements were available. After the discontinuity in the data (just prior to arrival at
Yellow Bud VOR), 7 measurements were available for most of the second portion of the
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flight. The FDI algorithm requires 2 redundant measurements and therefore requires
measurements from 7 sources. For this reason, the flight data collected during the
return to Ohio University Airport from Yellow Bud VOR was used to test the FDI
algorithm.

7.2 Summary of the Fault Detection and Isolation Algorithm

Tables 3 and 4 provide a summary of the equations that form the Fault Detection and
Isolation algorithm. Although o has been specified for GPS to be approximately 32
meters, it is difficult to define o for the hybrid GPS/Loran-C system. For example, there
are Loran-C propagation errors that require an accurate error model. Thus, for
simplicity in testing the FDI algorithm, the detection threshold, Ty, was chosen rather
than calculated. The detection threshold, Tp, should be chosen such that an error is
detected relatively fast, but the detection threshold should be large enough such that the
isolation algorithm can correctly identify the faulty sensor. A small detection threshold
means that the measurement axes are separated by a smaller distance at a radius of Ty,
from the origin, making it more likely that the wrong sensor will be isolated as the faulty
one.

Once an appropriate Ty, has been chosen, the algorithm calculates H and performs the
QR factorization as outlined in Tables 3 and 4. Once Q, has been found, the fact that it
is a 2 x 7 matrix is taken advantage of. To maximize the error visibility for a particular
sensor, the (2,i) element of Q, is set to zero by using a Givens rotation (see Equation
7.1). This does not change the vector length of the rows of Q,. For example the
detection statistic d; would be calculated as follows:

p=Q(-e-Db

p:[* * x * *x % *)(—g—b_)

* * * X X X X

G = [c S] the Givens rotation
. (1.1)

* x 0 % x * *

P * % Kk k k ok *
= (-e - b
P, * x 0 *x * *x %

d; = p,

*******)

GQP=(

where s represents the sine of an angle and c represents the cosine of an angle. The
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Table 3 Summary of Equations used in Fault Detection and Isolation.
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o measurement noise standard deviation
P probability of a false alarm

Tp detection threshold in parity space

P,  probability of a missed detection

By minimum required bias in parity space for detection
QP relates bias error in parity space to bias in

measurement space
b, minimum detectable bias in measurement space
ifn=6 gq-= QP
ifn>6, gq;=1f{Q,}
U"Qs relates measurement errors to solution errors
P, Probability of Exceeding R,
R, protection range in solution space
HDOP horizontal dilution of precision

Table 4 Description of Symbols in Table 3.
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length of row one of Q, is still one because a rotation does not change the length of a
vector. Therefore, the visibility of noise and bias errors has been maximized because by
increasing the value of element (1,3), and the other elements in row one are necessarily
decreased in value. A similar procedure is followed to find the other six detection
statistics, d, (k = 1, 2, 4, 5, 6, 7). Thus, seven different detection statistics are compared
against T,. One advantage of detecting faults this way is that the statistics of p,, and
therefore each d,, remain Gaussian. Also, a gain in signal-to-noise ratio is obtained for
a given error [31]. For future implementation, the algorithm will be generalized to
accommodate a parity space of more than two dimensions. It is anticipated that
Householder transformations will be used to zero out all but the first element in a
column of Q,.

Once a fault has been detected, the isolation algorithm is triggered. The algorithm finds
the angle between the parity vector and each measurement axis. The axis with which the
parity vector makes the smallest angle corresponds to the faulty measurement. Figure
26 is an example of the measurement axes in parity space. The fact that two redundant
measurements are available makes parity space two-dimensional, and the plots of parity
space will be especially helpful when isolation of faults is shown in Section 8. However,
isolation may prove to be somewhat difficult since all of the measurement axes are
coplanar, resulting in an increased probability of wrong isolation. The same isolation
approach can be used for parity space of more than two dimensions, except now a
hyperangle will be calculated between the parity vector and each measurement axis. The
isolation decision should be more accurate because the measurement axes will be spaced
out in more dimensions.

7.3 Fault Detection and Isolation Software

The FDI algorithm has been implemented in FORTRAN. An outline of the algorithm
is as follows:

Calculate the H matrix
Perform the QR factorization on H
Partition Q" to obtain Q,
DO for each measurement
Perform the Givens rotation on Q,
Calculate the parity vector
Set d, equal to the first element of the parity vector
Raise an alarm if d, > T}
END
IF an alarm was raised
Calculate the parity vector (no Givens rotations)
DO for each measurement
Calculate the angle between the parity vector and
the measurement axis
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Store the measurement axis with the smallest
calculated angle
END
Output relevant data for plots
END

The QR algorithm has also been implemented in FORTRAN. A series of Givens
rotations is used to take the H matrix to upper diagonal form [32]. The QR subroutine
returns R and QT. The subroutine that performs the Givens rotation is taken from the
Linpack library. It is used to form a Householder transformation, which is successively
called by the QR algorithm. The QR routine is as follows:

Determine the number of Householder transformations needed
Initialize QT as an identity matrix
BEGIN Main Loop

Call the Householder subroutine

Update R and Q'

Get ready for the next Householder transformation
END

The Householder routine uses successive Givens rotations to zero out all but the first
element in a column.
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8. RESULTS OF THE FAULT DETECTION AND ISOLATION ALGORITHM
USING REAL FLIGHT DATA WITH SIMULATED FAILURES

8.1 Simulation Parameters

T, was chosen to be 1000 meters so that the isolation algorithm would identify the faulty
measurement with a reasonable probability. The simulation was run 7 times, and an
error was introduced at the same point during each run. A ramp error of approximately
S m/s was injected into each of the 7 measurements (one error per simulation). A ramp
error with a small slope was chosen because it is the most difficult to detect and isolate.
Therefore, the FDI algorithm is put through a rigorous test. An example of the ramp
error is shown in figure 27.

Some measure of horizontal radial position error was needed to determine whether or
not there was an error in estimation space for each injected failure. The latitude and
longitude as a function of time were recorded for each simulation. These were later
compared to the latitude and longitude as calculated with no injected errors. Although
this is not an absolute reference, the hybrid GPS/Loran-C position solution has an
accuracy of approximately 200 meters [33]. Therefore, it is a fairly good reference for
the simulations and is used to calculate a horizontal radial position difference in meters
between the solution with the injected error and the solution without an injected error.

The 7 detection statistics were recorded for each simulation. The parity vector was also
recorded, because the isolation algorithm bases its decision on the parity vector. The
result is a trace in parity space growing outward as the ramp error gets larger. Itis
important to remember that, as implemented, the isolation decision is based solely on
one set of measurements (a snapshot) and currently does not account for the time
history of the parity vector.

8.2 Simulation Results -- Detection

Figures 28 through 34 indicate graphically the performance of the detection algorithm
for each of the 7 failures. For each simulation, the injected error is plotted along with
the horizontal radial position difference as described in Section 8.1. The 7 detection
statistics are shown on each plot as well, with the solid line representing d, vs. time for
the measurement that contains the ramp error.

A fault is declared when any one of the detection statistics exceeds d,, which occurred
for most of the failures. One exception is the simulated failure in measurement 2, as
depicted in Figure 29. None of the detection statistics reflects the fact that
measurement 2 has a significant error in it. However, the horizontal radial position
difference only grows to approximately 250 meters. This shows that large failures in

certain measurements do not necessarily cause substantial position errors. The
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Detection Performance (Measurement 3 Failed)
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Figure 30  Detection Performance (S m/s Ramp Error in Measurement 3).
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Detection Performance (Measurement 4 Failed)
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Detection Performance (Measurement 5 Failed)
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Figure 32  Detection Performance (5 m/s Ramp Error in Measurement 5).
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Detection Performance (Measurement 6 Failed)
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Detection Performance (Measurement 7 Failed)
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horizontal radial position difference grows at about one tenth the rate that the error in
measurement 2 grows. Although a large error in measurement 2 exists without
detection, it is not considered a missed detection because the horizontal radial position
difference is not very large. Thus, an undetected error is only considered to be a missed
detection if the position error is significant in estimation space.

Another case in which the failure was not detected occurred when an error was
simulated in measurement 7, which is shown in Figure 34. Note that, in this case, the
horizontal radial position difference reaches 1000 meters at the end of the run. Because
the detection threshold Ty, is not exceeded by any of the detection statistics, a fault is
not declared. This scenario could be considered to be a missed detection. However, it
appears from the plot that had the simulation been extended, the error would have soon
been detected, and an alarm would have been raised.

8.3 Simulation Results -- Isolation

Figure 35 contains traces of the parity vectors over time for each of the simulated
failures. Each parity trace begins at the same point and extends outward in a direction
dictated by the measurement which contains the error. Note that the axes are valid only
for a given set of measurements (one instant in time). They are presented merely to
gain insight into the behavior of the parity vector as the error grows in a particular
measurement. In fact, the axes in parity space do not move very far in a short amount
of time, with the exception of axis 2. This is apparent from the parity traces; only the
parity trace for an error in measurement 2 curves significantly, which indicates that axis
2 rotates fairly quickly compared to the other axes.

Most of the errors were correctly isolated by using the final parity vector shown in
Figure 35 for each of the simulations. Note that the errors in measurements 2 and 7
were not isolated because those are cases in which an alarm was not raised. Given the
method of isolating by calculating the angle between the parity vector and each
measurement axis, certain problems clearly exist. For example, the error in
measurement 6, when compared to the axes in Figure 35, is incorrectly isolated to
measurement 2. To fully understand the problem, it is necessary to examine the
behavior of the measurement axes as the error in measurement 6 grows.

Figure 36 shows the parity trace along with the measurement axes at the moment the
error in measurement 6 was first isolated (the moment when Ty, was exceeded). The
error was correctly identified to be contained in measurement 6. However, since axis 2
rotates so quickly, a short time later it forms a smaller angle with the parity vector than
axis 6 does, as depicted in Figure 37. Until axis 2 rotates far enough away, the wrong
sensor will continue to be isolated. Therefore, it is apparent that this method of
isolation may not be highly effective. Upon further examination of Figure 35, it is
apparent that a given error grows in the direction of the measurement axis associated
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Parity Trajctories Over Time
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Figure 35  Trajectories of the Parity Vectors over Time for all 7 Simulated
Measurement Errors.
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Correct Isolation of Error in Measurement 6
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Figure 36  Correct Isolation of Error in Measurement 6.
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Figure 37  Wrong Isolation of Error in Measurement 6.
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with the failed sensor. This information can be extremely valuable in correctly isolating
failures. Rather than simply taking a "snapshot" of parity space for each set of
measurements, it is beneficial to monitor the parity vector from one set of measurements
to the next. That is, some type of time history of the parity vector should be kept.
Figure 35 indicates that by calculating the perpendicular distance from the parity vector
to each axis over time should result in approximately a straight line for the axis
corresponding to the failed sensor. Consider the failure in measurement 5. By using
only the last parity vector, it would be difficult to decide whether measurement 3or
measurement 5 contains the error. However, by examining the trace of the parity vector
over time, it seems obvious that the error must be in measurement 5.

Figures 38 through 44 are plots of the perpendicular distance from the parity vector to
the measurement axes for each simulated failure. The distance to the axis corresponding
to the failed measurement is plotted as a solid line. The isolation decision is now based
on finding the line with the smallest slope, which would indicate that the measurement
error is growing in the direction of that axis in parity space. These plots clearly show
which measurement contains the error for all cases in which a fault was detected. In the
case of the error in measurement 2 (Figure 39), the parity vector remained relatively
close to the origin; therefore, the distance to each measurement axis remained small.
Still, though, the distance to axis 2 is fairly constant, which would indicate that an error
may exist in that measurement. Although no error was detected in the simulation of an
error in measurement 7, Figure 44 definitely indicates that an error exists in that
measurement. An interesting situation occurs in the error simulation for measurement 6
(Figure 43. At a particular time (approximately 430 seconds) the parity vector is at a
distance of zero meters from measurement axis 2 in parity space. A snapshot of parity
space at that moment would indicate that the error belonged to measurement 2.
However, Figure 43 clearly discounts that isolation decision; it is obvious from the time
history of the parity vector that the error must be contained in measurement 6.

It appears that observing the parity vector over time is a very powerful tool in the
isolation of faulty sensors. The parity vector should be stored over a period of time and
used to recognize trends like those seen in Figures 38 through 44. The "snapshot" batch
estimator is still applicable to fault detection, but the parity information should be saved
to aid fault isolation, rather than discarded for each set of measurements.
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Isolation - Distance to each Axis vs. Time (Measurement 1 Failed)
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Isolation - Distance to each Axis vs. Time (Measurement 2 Failed)
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Isolation - Distance 10 each Axis vs. Time (Measurement 3 Failed)
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Isolation - Distance to each Axis vs. Time (Measurement 4 Failed)
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Figure 41  Isolation Performance (5 m/s Ramp Error in Measurement 4).
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Isolation - Distance t0 each Axis vs. Time (Measurement 5 Failed)
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Isolation - Distance to each Axis vs. Time (Measurement 6 Failed)
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Figure 43  Isolation Performance (5 m/s Ramp Error in Measurement 6).
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Isolation - Distance 10 each Axis vs. Time (Measurement 7 Failed)
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9 SUMMARY AND CONCLUSIONS

Fault Detection and Isolation (FDI) algorithms are required to achieve a sole-means
navigation system using GPS and Loran-C. In order to provide a better understanding
of the Fault Detection and Isolation algorithm, a simplified example is presented using
three voltmeters to measure a single voltage. The two redundant measurements allow
for the full characterization of the FDI algorithm.

Because navigation systems will depend on FDI for integrity assurance, the availability of
a navigation system will depend on the availability of at least two redundant
measurements. A Markov analysis, combined with a GPS coverage program, is
presented to show that GPS by itself could meet supplemental availability requirements
for fault detection, but not for isolation. An example of an integrated navigation system,
GPS/Loran-C, is presented and actual flight data is used to demonstrate the FDI
algorithm in the presence of signal failures. Computer simulations are performed to
inject artificial failures into GPS and Loran-C signals, and the results of the FDI
algorithm are displayed pictorially.

The following conclusions are based on the work presented in this report:

L. Sole means navigation will require a high availability of at least two redundant
measurements for FDI. Therefore, GPS must be augmented by another system, such as
Loran-C, before it has the potential to meet requirements for sole means navigation.

2. The performance of the fault detection algorithm is fully characterized. The
probability of a false alarm should not be traded against the probability of a missed
detection. Instead, both probabilities should be traded against the horizontal protection
radius. This approach guarantees the integrity of the navigation solution at all time and
space points. Furthermore, it facilitates changes in navigation accuracy requirements
without the need to change the implementation of the algorithm.

3. The parity vector should be observed over a period of time in order to aid fault
isolation. The "snapshot" batch estimator is still applicable, but rather than discarding
the parity information for each measurement sample, the history of the parity vector
should be stored and evaluated. The methods presented in this report constitute a novel
approach to fault isolation which greatly enhances the effectiveness of FDIL
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